Succinylation profiles of brain injury after intracerebral hemorrhage

Author:

Deng Yuan-Hong,Zhang Xin-Xiao,Tao Chuan-Yuan,Liang Yan-Jing,Yuan Jing,Yang Su-Hao,Yang Yuan-Rui,Xiong Xiao-YiORCID

Abstract

Protein posttranslational modifications (PTMs) regulate the biological processes of human diseases by genetic code expansion and cellular pathophysiology regulation; however, system-wide changes in PTM levels in the intracerebral hemorrhage (ICH) brain remain poorly understood. Succinylation refers to a major PTM during the regulation of multiple biological processes. In this study, according to the methods of quantitative succinyllysine proteomics based on high-resolution mass spectrometry, we investigated ICH-associated brain protein succinyllysine modifications and obtained 3,680 succinylated sites and quantified around 3,530 sites. Among them, 25 succinyllysine sites on 23 proteins were upregulated (hypersuccinylated), whereas 13 succinyllysine sites on 12 proteins were downregulated (hyposuccinylated) following ICH. The cell component enrichment analysis of these succinylproteins with significant changes showed that 58.3% of the hyposuccinylated proteins were observed in the mitochondria, while the hyper-succinylproteins located in mitochondria decreased in the percentage to about 35% in ICH brains with a concomitant increase in the percentage of cytoplasm to 30.4%. Further bioinformatic analysis showed that the succinylproteins were mostly mitochondria and synapse-related subcellular located and involved in many pathophysiological processes, like metabolism, synapse working, and ferroptosis. Moreover, the integrative analysis of our succinylproteomics data and previously published transcriptome data showed that the mRNAs matched by most differentially succinylated proteins were especially highly expressed in neurons, endothelial cells, and astrocytes. Our study uncovers some succinylation-affected processes and pathways in response to ICH brains and gives us novel insights into understanding pathophysiological processes of brain injury caused by ICH.

Funder

the science foudation for distinguished young scholars in science and technology department in sichuan provincen

the national natural science foundation of china

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. Intracerebral haemorrhage: current approaches to acute management;C Cordonnier;Lancet,2018

2. Integrative analysis of transcriptomes highlights potential functions of transfer-RNA-derived small RNAs in experimental intracerebral hemorrhage;PF Li;Aging,2020

3. Brain Transcriptomic Analysis of Hereditary Cerebral Hemorrhage With Amyloidosis-Dutch Type;L Grand Moursel;Front Aging Neurosci,2018

4. Integration of Transcriptome Resequencing and Quantitative Proteomics Analyses of Collagenase VII-Induced Intracerebral Hemorrhage in Mice;F Cao;Front Genet,2020

5. Quantitative proteomic analysis of intracerebral hemorrhage in rats with a focus on brain energy metabolism;T Liu;Brain Behav,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3