A 50 Hz magnetic field affects hemodynamics, ECG and vascular endothelial function in healthy adults: A pilot randomized controlled trial

Author:

Okano HideyukiORCID,Fujimura Akikatsu,Kondo Tsukasa,Laakso Ilkka,Ishiwatari Hiromi,Watanuki Keiichi

Abstract

Application of exposure to 50/60 Hz magnetic fields (MFs) has been conducted in the treatment of muscle pain and fatigue mainly in Japan. However, whether MFs could increase blood flow leading to muscle fatigue recovery has not been sufficiently tested. We investigated the acute effects of a 50 Hz sinusoidal MF at Bmax 180 mT on hemodynamics, electrocardiogram, and vascular endothelial function in healthy young men. Three types of regional exposures to a 50 Hz MF, i.e., forearm, upper arm, or neck exposure to MF were performed. Participants who received three types of real MF exposures had significantly increased ulnar arterial blood flow velocity compared to the sham exposures. Furthermore, after muscle loading exercise, MF exposure recovered hemoglobin oxygenation index values faster and higher than sham exposure from the loading condition. Moreover, participants who received real MF exposure in the neck region had significantly increased parasympathetic high-frequency activity relative to the sham exposure. The MF exposure in the upper arm region significantly increased the brachial artery flow-mediated dilation compared to the sham exposure. Computer simulations of induced in situ electric fields indicated that the order-of-magnitude estimates of the peak values were 100–500 mV/m, depending on the exposure conditions. This study provides the first evidence that a 50 Hz MF can activate parasympathetic activity and thereby lead to increase vasodilation and blood flow via a nitric oxide-dependent mechanism. Trial registration: UMIN Clinical Trial Registry (CTR) UMIN000038834. The authors confirm that all ongoing and related trials for this drug/intervention are registered.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3