Use of machine learning tools to predict health risks from climate-sensitive extreme weather events: A scoping review

Author:

Ssebyala Shakirah N.ORCID,Kintu Timothy M.,Muganzi David J.,Dresser CalebORCID,Demetres Michelle R.ORCID,Lai Yuan,Mercy Kobusingye,Li Chenyu,Wang Fei,Setoguchi SokoORCID,Celi Leo Anthony,Ghosh Arnab K.ORCID

Abstract

Machine learning (ML) algorithms may play a role in predicting the adverse health impacts of climate-sensitive extreme weather events because accurate prediction of such effects can guide proactive clinical and policy decisions. To systematically review the literature that describe ML algorithms that predict health outcomes from climate-sensitive extreme weather events. A comprehensive literature search was performed in the following databases from inception–October 2022: Ovid MEDLINE, Ovid EMBASE, The Cochrane Library, Web of Science, bioRxiv, medRxiv, Institute of Electrical and Electronic Engineers, Google Scholar, and Engineering Village. The retrieved studies were then screened for eligibility against predefined inclusion/exclusion criteria. The studies were then qualitatively synthesized based on the type of extreme weather event. Gaps in the literature were identified based on this synthesis. Of the 6096 records screened, seven studies met the inclusion criteria. Six of the studies predicted health outcomes from heat waves, and one for flooding. Health outcomes described included 1) all-cause non-age standardized mortality rates, 2) heat-related conditions and 3) post-traumatic stress disorder. Prediction models were developed using six validated ML techniques including non-linear exponential regression, logistic regression, spatiotemporal Integrated Laplace Approximation (INLA), random forest and decision tree methods (DT), and support vector machines (SVM). Use of ML algorithms to assess adverse health impacts from climate-sensitive extreme weather events is possible. However, to fully utilize these ML techniques, better quality data suitable for use is desirable. Development of data standards for climate change and health may help ensure model robustness and comparison across space and time. Future research should also consider health equity implications.

Publisher

Public Library of Science (PLoS)

Reference31 articles.

1. US Department of Health & Human Services. The Office of Climate Change and Health Equity. Available from: https://www.hhs.gov/ocche/index.html.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3