Tissue-specific and cis-regulatory changes underlie parallel, adaptive gene expression evolution in house mice

Author:

Durkin Sylvia M.ORCID,Ballinger Mallory A.ORCID,Nachman Michael W.ORCID

Abstract

Changes in gene regulation have long been appreciated as a driving force of adaptive evolution, however the relative contributions of cis- and trans-acting changes to gene regulation over short evolutionary timescales remain unclear. Instances of recent, parallel phenotypic evolution provide an opportunity to assess whether parallel patterns are seen at the level of gene expression, and to assess the relative contribution of cis- and trans- changes to gene regulation in the early stages of divergence. Here, we studied gene expression in liver and brown adipose tissue in two wild-derived strains of house mice that independently adapted to cold, northern environments, and we compared them to a strain of house mice from a warm, tropical environment. To investigate gene regulatory evolution, we studied expression in parents and allele-specific expression in F1 hybrids of crosses between warm-adapted and cold-adapted strains. First, we found that the different cold-adapted mice showed both unique and shared changes in expression, but that the proportion of shared changes (i.e. parallelism) was greater than expected by chance. Second, we discovered that expression evolution occurred largely at tissue-specific and cis-regulated genes, and that these genes were over-represented in parallel cases of evolution. Finally, we integrated the expression data with scans for selection in natural populations and found substantial parallelism in the two northern populations for genes under selection. Furthermore, selection outliers were associated with cis-regulated genes more than expected by chance; cis-regulated genes under selection influenced phenotypes such as body size, immune functioning, and activity level. These results demonstrate that parallel patterns of gene expression in mice that have independently adapted to cold environments are driven largely by tissue-specific and cis-regulatory changes, providing insight into the mechanisms of adaptive gene regulatory evolution at the earliest stages of divergence.

Funder

National Institutes of Health

National Science Foundation

Museum of Vertebrate Zoology

Philomathia Foundation

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3