Expression, not sequence, distinguishes miR-238 from its miR-239ab sister miRNAs in promoting longevity in Caenorhabditis elegans

Author:

Chipman Laura B.ORCID,Luc SanORCID,Nicastro Ian A.,Hulahan Jesse J.,Dann Delaney C.ORCID,Bodas Devavrat M.ORCID,Pasquinelli Amy E.ORCID

Abstract

MicroRNAs (miRNAs) regulate gene expression by base-pairing to target sequences in messenger RNAs (mRNAs) and recruiting factors that induce translational repression and mRNA decay. In animals, nucleotides 2–8 at the 5’ end of the miRNA, called the seed region, are often necessary and sometimes sufficient for functional target interactions. MiRNAs that contain identical seed sequences are grouped into families where individual members have the potential to share targets and act redundantly. A rare exception seemed to be the miR-238/239ab family in Caenorhabditis elegans, as previous work indicated that loss of miR-238 reduced lifespan while deletion of the miR-239ab locus resulted in enhanced longevity and thermal stress resistance. Here, we re-examined these potentially opposing roles using new strains that individually disrupt each miRNA sister. We confirmed that loss of miR-238 is associated with a shortened lifespan but could detect no longevity or stress phenotypes in animals lacking miR-239a or miR-239b, individually or in combination. Additionally, dozens of genes were mis-regulated in miR-238 mutants but almost no gene expression changes were detected in either miR-239a or miR-239b mutants compared to wild type animals. We present evidence that the lack of redundancy between miR-238 and miR-239ab is independent of their sequence differences; miR-239a or miR-239b could substitute for the longevity role of miR-238 when expressed from the miR-238 locus. Altogether, these studies disqualify miR-239ab as negative regulators of aging and demonstrate that expression, not sequence, dictates the specific role of miR-238 in promoting longevity.

Funder

National Institute of General Medical Sciences

National Science Foundation

University of California, San Diego

national institute of aging

American Federation for Aging Research

Office of Research Infrastructure Programs, National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference77 articles.

1. Towards a molecular understanding of microRNA-mediated gene silencing;S Jonas;Nat Rev Genet,2015

2. Metazoan MicroRNAs.;DP Bartel;Cell,2018

3. Regulation and different functions of the animal microRNA-induced silencing complex;P Frédérick;WIREs RNA,2022

4. Regulation of microRNA function in animals;LFR Gebert;Nat Rev Mol Cell Biol,2019

5. Overview of microRNA biogenesis, mechanisms of actions, and circulation;J O’Brien;Front Endocrinol (Lausanne).,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3