Distinct signaling signatures drive compensatory proliferation via S-phase acceleration

Author:

Crucianelli CarloORCID,Jaiswal JanhviORCID,Vijayakumar Maya Ananthakrishnan,Nogay Liyne,Cosolo AndreaORCID,Grass IsabelleORCID,Classen Anne-KathrinORCID

Abstract

Regeneration relies on cell proliferation to restore damaged tissues. Multiple signaling pathways activated by local or paracrine cues have been identified to promote regenerative proliferation. How different types of tissue damage may activate distinct signaling pathways and how these differences converge on regenerative proliferation is less well defined. To better understand how tissue damage and proliferative signals are integrated during regeneration, we investigate models of compensatory proliferation in Drosophila imaginal discs. We find that compensatory proliferation is associated with a unique cell cycle profile, which is characterized by short G1 and G2 phases and, surprisingly, by acceleration of the S-phase. S-phase acceleration can be induced by two distinct signaling signatures, aligning with inflammatory and non-inflammatory tissue damage. Specifically, non-autonomous activation of JAK/STAT and Myc in response to inflammatory damage, or local activation of Ras/ERK and Hippo/Yki in response to elevated cell death, promote accelerated nucleotide incorporation during S-phase. This previously unappreciated convergence of different damaging insults on the same regenerative cell cycle program reconciles previous conflicting observations on proliferative signaling in different tissue regeneration and tumor models.

Funder

Boehringer Ingelheim Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference88 articles.

1. A Beginner’s Introduction to Skin Stem Cells and Wound Healing.;D Diaz-Garcia;Int J Mol Sci,2021

2. Model systems for regeneration: Drosophila.;DT Fox;Development,2020

3. Insights into regeneration tool box: An animal model approach;AS Mehta;Dev Biol,2019

4. Drosophila as a Model System to Study Cell Signaling in Organ Regeneration;S Ahmed-de-Prado;Biomed Res Int,2018

5. Epithelial barriers in homeostasis and disease.;AM Marchiando;Annu Rev Pathol,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3