Stress combined with loss of the Candida albicans SUMO protease Ulp2 triggers selection of aneuploidy via a two-step process

Author:

Rizzo Marzia,Soisangwan NatthaponORCID,Vega-Estevez Samuel,Price Robert Jordan,Uyl Chloe,Iracane Elise,Shaw Matt,Soetaert Jan,Selmecki Anna,Buscaino AlessiaORCID

Abstract

A delicate balance between genome stability and instability ensures genome integrity while generating genetic diversity, a critical step for evolution. Indeed, while excessive genome instability is harmful, moderated genome instability can drive adaptation to novel environments by maximising genetic variation.Candida albicans, a human fungal pathogen that colonises different parts of the human body, adapts rapidly and frequently to different hostile host microenvironments. In this organism, the ability to generate large-scale genomic variation is a key adaptative mechanism triggering dangerous infections even in the presence of antifungal drugs. Understanding how fitter novel karyotypes are selected is key to determining howC.albicansand other microbial pathogens establish infections. Here, we identified the SUMO protease Ulp2 as a regulator ofC.albicansgenome integrity through genetic screening. Deletion ofULP2leads to increased genome instability, enhanced genome variation and reduced fitness in the absence of additional stress. The combined stress caused by the lack ofULP2and antifungal drug treatment leads to the selection of adaptive segmental aneuploidies that partially rescue the fitness defects ofulp2Δ/Δ cells. Short and long-read genomic sequencing demonstrates that these novel genotypes are selected via a two-step process leading to the formation of novel chromosomal fragments with breakpoints at microhomology regions and DNA repeats.

Funder

Biotechnology and Biological Sciences Research Council

University of Kent

University of Minnesota

Foundation for the National Institutes of Health

Burroughs Wellcome Fund

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3