The selfish yeast plasmid exploits a SWI/SNF-type chromatin remodeling complex for hitchhiking on chromosomes and ensuring high-fidelity propagation

Author:

Ma Chien-HuiORCID,Kumar DeepanshuORCID,Jayaram MakkuniORCID,Ghosh Santanu K.ORCID,Iyer Vishwanath R.ORCID

Abstract

Extra-chromosomal selfish DNA elements can evade the risk of being lost at every generation by behaving as chromosome appendages, thereby ensuring high fidelity segregation and stable persistence in host cell populations. The yeast 2-micron plasmid and episomes of the mammalian gammaherpes and papilloma viruses that tether to chromosomes and segregate by hitchhiking on them exemplify this strategy. We document for the first time the utilization of a SWI/SNF-type chromatin remodeling complex as a conduit for chromosome association by a selfish element. One principal mechanism for chromosome tethering by the 2-micron plasmid is the bridging interaction of the plasmid partitioning proteins (Rep1 and Rep2) with the yeast RSC2 complex and the plasmid partitioning locusSTB. We substantiate this model by multiple lines of evidence derived from genomics, cell biology and interaction analyses. We describe a Rep-STBbypass system in which a plasmid engineered to non-covalently associate with the RSC complex mimics segregation by chromosome hitchhiking. Given the ubiquitous prevalence of SWI/SNF family chromatin remodeling complexes among eukaryotes, it is likely that the 2-micron plasmid paradigm or analogous ones will be encountered among other eukaryotic selfish elements.

Funder

National Science Foundation

Depart of Science and Technology India

Fellowship grant from Department of Biotechnology

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3