A unique cell wall synthetic response evoked by glucosamine determines pathogenicity-associated fungal cellular differentiation

Author:

Hu PengjieORCID,Ding HaoORCID,Shen Lan,He Guang-Jun,Liu Huimin,Tian Xiuyun,Tao ChangyuORCID,Bai Xiangzheng,Liang Jingnan,Jin Cheng,Xu XinpingORCID,Yang EnceORCID,Wang LinqiORCID

Abstract

The yeast-to-hypha transition is tightly associated with pathogenicity in many human pathogenic fungi, such as the model fungal pathogen Cryptococcus neoformans, which is responsible for approximately 180,000 deaths annually. In this pathogen, the yeast-to-hypha transition can be initiated by distinct stimuli: mating stimulation or glucosamine (GlcN), the monomer of cell wall chitosan. However, it remains poorly understood how the signal specificity for Cryptococcus morphological transition by disparate stimuli is ensured. Here, by integrating temporal expression signature analysis and phenome-based clustering evaluation, we demonstrate that GlcN specifically triggers a unique cellular response, which acts as a critical determinant underlying the activation of GlcN-induced filamentation (GIF). This cellular response is defined by an unusually hyperactive cell wall synthesis that is highly ATP-consuming. A novel cell surface protein Gis1 was identified as the indicator molecule for the GlcN-induced cell wall response. The Mpk1-directed cell wall pathway critically bridges global cell wall gene induction and intracellular ATP supply, ensuring the Gis1-dependent cell wall response and the stimulus specificity of GIF. We further reveal that the ability of Mpk1 to coordinate the cell wall response and GIF activation is conserved in different Cryptococcus pathogens. Phosphoproteomics-based profiling together with genetic and phenotypic analysis revealed that the Mpk1 kinase mediates the regulatory specificity of GIF through a coordinated downstream regulatory network centered on Skn7 and Crz1. Overall, our findings discover an unprecedented and conserved cell wall biosynthesis-dependent fungal differentiation commitment mechanism, which enables the signal specificity of pathogenicity-related dimorphism induced by GlcN in Cryptococcus pathogens.

Funder

National Key Research and Development Program

National Science and Technology Major Project

Key Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

CAS Interdisciplinary Innovation Team

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference85 articles.

1. Dimorphism and virulence in fungi;BS Klein;Curr Opin Microbiol,2007

2. Morphogenesis in fungal pathogenicity: shape, size, and surface;L Wang;PLoS Pathog,2012

3. Morphogenesis in Candida albicans;M Whiteway;Annual review of microbiology,2007

4. Molecular Evolution of Antifungal Drug Resistance;N Robbins;Annu Rev Microbiol,2017

5. New weapons in the Cryptococcus infection toolkit;LM Taylor-Smith;Curr Opin Microbiol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3