AI-Aristotle: A physics-informed framework for systems biology gray-box identification

Author:

Ahmadi Daryakenari NazaninORCID,De Florio MarioORCID,Shukla Khemraj,Karniadakis George EmORCID

Abstract

Discovering mathematical equations that govern physical and biological systems from observed data is a fundamental challenge in scientific research. We present a new physics-informed framework for parameter estimation and missing physics identification (gray-box) in the field of Systems Biology. The proposed framework—named AI-Aristotle—combines the eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs) with symbolic regression (SR) techniques for parameter discovery and gray-box identification. We test the accuracy, speed, flexibility, and robustness of AI-Aristotle based on two benchmark problems in Systems Biology: a pharmacokinetics drug absorption model and an ultradian endocrine model for glucose-insulin interactions. We compare the two machine learning methods (X-TFC and PINNs), and moreover, we employ two different symbolic regression techniques to cross-verify our results. To test the performance of AI-Aristotle, we use sparse synthetic data perturbed by uniformly distributed noise. More broadly, our work provides insights into the accuracy, cost, scalability, and robustness of integrating neural networks with symbolic regressors, offering a comprehensive guide for researchers tackling gray-box identification challenges in complex dynamical systems in biomedicine and beyond.

Funder

National Institutes of Health

Office of Naval Research

Publisher

Public Library of Science (PLoS)

Reference67 articles.

1. A. Tarantola, Inverse problem theory and methods for model parameter estimation, SIAM, 2005.

2. Rico-Martinez R, Anderson J, Kevrekidis I. Continuous-time nonlinear signal processing: a neural network based approach for gray box identification. In: Proceedings of IEEE Workshop on Neural Networks for Signal Processing. IEEE; 1994. p. 596–605.

3. Discovering governing equations from data by sparse identification of nonlinear dynamical systems;SL Brunton;Proceedings of the national academy of sciences,2016

4. Regression shrinkage and selection via the lasso;R Tibshirani;Journal of the Royal Statistical Society: Series B (Methodological),1996

5. Compressed sensing;DL Donoho;IEEE Transactions on information theory,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3