FindAdapt: A python package for fast and accurate adapter detection in small RNA sequencing

Author:

Chen Hua-Chang,Wang Jing,Shyr Yu,Liu QiORCID

Abstract

Adapter trimming is an essential step for analyzing small RNA sequencing data, where reads are generally longer than target RNAs ranging from 18 to 30 bp. Most adapter trimming tools require adapter information as input. However, adapter information is hard to access, specified incorrectly, or not provided with publicly available datasets, hampering their reproducibility and reusability. Manual identification of adapter patterns from raw reads is labor-intensive and error-prone. Moreover, the use of randomized adapters to reduce ligation biases during library preparation makes adapter detection even more challenging. Here, we present FindAdapt, a Python package for fast and accurate detection of adapter patterns without relying on prior information. We demonstrated that FindAdapt was far superior to existing approaches. It identified adapters successfully in 180 simulation datasets with diverse read structures and 3,184 real datasets covering a variety of commercial and customized small RNA library preparation kits. FindAdapt is stand-alone software that can be easily integrated into small RNA sequencing analysis pipelines.

Funder

National Cancer Institute

National Institutes of Health

Cancer Center Support Grant

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference31 articles.

1. Small RNA-Sequencing: Approaches and Considerations for miRNA Analysis;S Benesova;Diagnostics (Basel),2021

2. Exploring the expanding universe of small RNAs;J Shi;Nat Cell Biol,2022

3. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease;JS Sadick;Neuron,2022

4. Expression characteristics of piRNAs in ovine luteal phase and follicular phase ovaries;C Li;Front Vet Sci,2022

5. Changes in the Small Noncoding RNAome During M1 and M2 Macrophage Polarization;D Ma;Front Immunol,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3