The geometric evolution of aortic dissections: Predicting surgical success using fluctuations in integrated Gaussian curvature

Author:

Khabaz Kameel,Yuan Karen,Pugar Joseph,Jiang David,Sankary Seth,Dhara Sanjeev,Kim Junsung,Kang Janet,Nguyen Nhung,Cao Kathleen,Washburn Newell,Bohr Nicole,Lee Cheong Jun,Kindlmann Gordon,Milner Ross,Pocivavsek LukaORCID

Abstract

Clinical imaging modalities are a mainstay of modern disease management, but the full utilization of imaging-based data remains elusive. Aortic disease is defined by anatomic scalars quantifying aortic size, even though aortic disease progression initiates complex shape changes. We present an imaging-based geometric descriptor, inspired by fundamental ideas from topology and soft-matter physics that captures dynamic shape evolution. The aorta is reduced to a two-dimensional mathematical surface in space whose geometry is fully characterized by the local principal curvatures. Disease causes deviation from the smooth bent cylindrical shape of normal aortas, leading to a family of highly heterogeneous surfaces of varying shapes and sizes. To deconvolute changes in shape from size, the shape is characterized using integrated Gaussian curvature or total curvature. The fluctuation in total curvature (δK) across aortic surfaces captures heterogeneous morphologic evolution by characterizing local shape changes. We discover that aortic morphology evolves with a power-law defined behavior with rapidly increasing δK forming the hallmark of aortic disease. Divergent δK is seen for highly diseased aortas indicative of impending topologic catastrophe or aortic rupture. We also show that aortic size (surface area or enclosed aortic volume) scales as a generalized cylinder for all shapes. Classification accuracy for predicting aortic disease state (normal, diseased with successful surgery, and diseased with failed surgical outcomes) is 92.8±1.7%. The analysis of δK can be applied on any three-dimensional geometric structure and thus may be extended to other clinical problems of characterizing disease through captured anatomic changes.

Funder

National Heart, Lung, and Blood Institute

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3