Unsupervised machine learning predicts future sexual behaviour and sexually transmitted infections among HIV-positive men who have sex with men

Author:

Andresen SaraORCID,Balakrishna Suraj,Mugglin CatrinaORCID,Schmidt Axel J.,Braun Dominique L.,Marzel Alex,Doco Lecompte Thanh,Darling Katharine EAORCID,Roth Jan A.,Schmid Patrick,Bernasconi EnosORCID,Günthard Huldrych F.,Rauch Andri,Kouyos Roger D.ORCID,Salazar-Vizcaya Luisa,

Abstract

Machine learning is increasingly introduced into medical fields, yet there is limited evidence for its benefit over more commonly used statistical methods in epidemiological studies. We introduce an unsupervised machine learning framework for longitudinal features and evaluate it using sexual behaviour data from the last 20 years from over 3’700 participants in the Swiss HIV Cohort Study (SHCS). We use hierarchical clustering to find subgroups of men who have sex with men in the SHCS with similar sexual behaviour up to May 2017, and apply regression to test whether these clusters enhance predictions of sexual behaviour or sexually transmitted diseases (STIs) after May 2017 beyond what can be predicted with conventional parameters. We find that behavioural clusters enhance model performance according to likelihood ratio test, Akaike information criterion and area under the receiver operator characteristic curve for all outcomes studied, and according to Bayesian information criterion for five out of ten outcomes, with particularly good performance for predicting future sexual behaviour and recurrent STIs. We thus assess a methodology that can be used as an alternative means for creating exposure categories from longitudinal data in epidemiological models, and can contribute to the understanding of time-varying risk factors.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Swiss HIV Cohort Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

1. Cohort-Derived Machine Learning Models for Individual Prediction of Chronic Kidney Disease in People Living With Human Immunodeficiency Virus: A Prospective Multicenter Cohort Study;JA Roth;J Infect Dis,2020

2. High-performance medicine: the convergence of human and artificial intelligence;EJ Topol;Nat Med,2019

3. 100 Years of STIs in the UK: A review of national surveillance data;H Mohammed;Sex Transm Infect,2018

4. The resurgence of syphilis in high-income countries in the 2000s: A focus on Europe;G Spiteri;Epidemiol Infect,2019

5. Incidence of new hepatitis C virus infection is still increasing in French MSM living with HIV;P Pradat;Aids,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3