Ensemble learning and ground-truth validation of synaptic connectivity inferred from spike trains

Author:

Donner ChristianORCID,Bartram Julian,Hornauer Philipp,Kim Taehoon,Roqueiro Damian,Hierlemann AndreasORCID,Obozinski Guillaume,Schröter ManuelORCID

Abstract

Probing the architecture of neuronal circuits and the principles that underlie their functional organization remains an important challenge of modern neurosciences. This holds true, in particular, for the inference of neuronal connectivity from large-scale extracellular recordings. Despite the popularity of this approach and a number of elaborate methods to reconstruct networks, the degree to which synaptic connections can be reconstructed from spike-train recordings alone remains controversial. Here, we provide a framework to probe and compare connectivity inference algorithms, using a combination of synthetic ground-truth and in vitro data sets, where the connectivity labels were obtained from simultaneous high-density microelectrode array (HD-MEA) and patch-clamp recordings. We find that reconstruction performance critically depends on the regularity of the recorded spontaneous activity, i.e., their dynamical regime, the type of connectivity, and the amount of available spike-train data. We therefore introduce an ensemble artificial neural network (eANN) to improve connectivity inference. We train the eANN on the validated outputs of six established inference algorithms and show how it improves network reconstruction accuracy and robustness. Overall, the eANN demonstrated strong performance across different dynamical regimes, worked well on smaller datasets, and improved the detection of synaptic connectivity, especially inhibitory connections. Results indicated that the eANN also improved the topological characterization of neuronal networks. The presented methodology contributes to advancing the performance of inference algorithms and facilitates our understanding of how neuronal activity relates to synaptic connectivity.

Funder

Swiss Data Science Center

ETH Zurich

European Research Council

Publisher

Public Library of Science (PLoS)

Reference91 articles.

1. Architectures of neuronal circuits;L Luo;Science,2021

2. Micro-connectomics: probing the organization of neuronal networks at the cellular scale;M Schröter;Nature Reviews Neuroscience 2017 18:3,2017

3. The emergence of functional microcircuits in visual cortex;H Ko;Nature 2013 496:7443,2013

4. Anatomy and function of an excitatory network in the visual cortex;WCA Lee;Nature 2016 532:7599,2016

5. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure;W Denk;PLoS Biology,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3