A new machine learning method for cancer mutation analysis

Author:

Habibi Mahnaz,Taheri GolnazORCID

Abstract

It is complicated to identify cancer-causing mutations. The recurrence of a mutation in patients remains one of the most reliable features of mutation driver status. However, some mutations are more likely to happen than others for various reasons. Different sequencing analysis has revealed that cancer driver genes operate across complex pathways and networks, with mutations often arising in a mutually exclusive pattern. Genes with low-frequency mutations are understudied as cancer-related genes, especially in the context of networks. Here we propose a machine learning method to study the functionality of mutually exclusive genes in the networks derived from mutation associations, gene-gene interactions, and graph clustering. These networks have indicated critical biological components in the essential pathways, especially those mutated at low frequency. Studying the network and not just the impact of a single gene significantly increases the statistical power of clinical analysis. The proposed method identified important driver genes with different frequencies. We studied the function and the associated pathways in which the candidate driver genes participate. By introducing lower-frequency genes, we recognized less studied cancer-related pathways. We also proposed a novel clustering method to specify driver modules. We evaluated each driver module with different criteria, including the terms of biological processes and the number of simultaneous mutations in each cancer. Materials and implementations are available at: https://github.com/MahnazHabibi/MutationAnalysis.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3