A comparison of EEG encoding models using audiovisual stimuli and their unimodal counterparts

Author:

Desai Maansi,Field Alyssa M.,Hamilton Liberty S.ORCID

Abstract

Communication in the real world is inherently multimodal. When having a conversation, typically sighted and hearing people use both auditory and visual cues to understand one another. For example, objects may make sounds as they move in space, or we may use the movement of a person’s mouth to better understand what they are saying in a noisy environment. Still, many neuroscience experiments rely on unimodal stimuli to understand encoding of sensory features in the brain. The extent to which visual information may influence encoding of auditory information and vice versa in natural environments is thus unclear. Here, we addressed this question by recording scalp electroencephalography (EEG) in 11 subjects as they listened to and watched movie trailers in audiovisual (AV), visual (V) only, and audio (A) only conditions. We then fit linear encoding models that described the relationship between the brain responses and the acoustic, phonetic, and visual information in the stimuli. We also compared whether auditory and visual feature tuning was the same when stimuli were presented in the original AV format versus when visual or auditory information was removed. In these stimuli, visual and auditory information was relatively uncorrelated, and included spoken narration over a scene as well as animated or live-action characters talking with and without their face visible. For this stimulus, we found that auditory feature tuning was similar in the AV and A-only conditions, and similarly, tuning for visual information was similar when stimuli were presented with the audio present (AV) and when the audio was removed (V only). In a cross prediction analysis, we investigated whether models trained on AV data predicted responses to A or V only test data similarly to models trained on unimodal data. Overall, prediction performance using AV training and V test sets was similar to using V training and V test sets, suggesting that the auditory information has a relatively smaller effect on EEG. In contrast, prediction performance using AV training and A only test set was slightly worse than using matching A only training and A only test sets. This suggests the visual information has a stronger influence on EEG, though this makes no qualitative difference in the derived feature tuning. In effect, our results show that researchers may benefit from the richness of multimodal datasets, which can then be used to answer more than one research question.

Funder

Texas Speech Language Hearing Foundation

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3