Regulus infers signed regulatory relations from few samples’ information using discretization and likelihood constraints

Author:

Louarn Marine,Collet Guillaume,Barré Ève,Fest Thierry,Dameron OlivierORCID,Siegel Anne,Chatonnet FabriceORCID

Abstract

Motivation Transcriptional regulation is performed by transcription factors (TF) binding to DNA in context-dependent regulatory regions and determines the activation or inhibition of gene expression. Current methods of transcriptional regulatory circuits inference, based on one or all of TF, regions and genes activity measurements require a large number of samples for ranking the candidate TF-gene regulation relations and rarely predict whether they are activations or inhibitions. We hypothesize that transcriptional regulatory circuits can be inferred from fewer samples by (1) fully integrating information on TF binding, gene expression and regulatory regions accessibility, (2) reducing data complexity and (3) using biology-based likelihood constraints to determine the global consistency between a candidate TF-gene relation and patterns of genes expressions and region activations, as well as qualify regulations as activations or inhibitions. Results We introduce Regulus, a method which computes TF-gene relations from gene expressions, regulatory region activities and TF binding sites data, together with the genomic locations of all entities. After aggregating gene expressions and region activities into patterns, data are integrated into a RDF (Resource Description Framework) endpoint. A dedicated SPARQL (SPARQL Protocol and RDF Query Language) query retrieves all potential relations between expressed TF and genes involving active regulatory regions. These TF-region-gene relations are then filtered using biological likelihood constraints allowing to qualify them as activation or inhibition. Regulus provides signed relations consistent with public databases and, when applied to biological data, identifies both known and potential new regulators. Regulus is devoted to context-specific transcriptional circuits inference in human settings where samples are scarce and cell populations are closely related, using discretization into patterns and likelihood reasoning to decipher the most robust regulatory relations.

Funder

INRIA / INSERM

Hematology Laboratory, Pôle de Biologie, Centre Hospitalier Universitaire de Rennes, Rennes, France

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3