iPiDA-SWGCN: Identification of piRNA-disease associations based on Supplementarily Weighted Graph Convolutional Network

Author:

Hou Jialu,Wei Hang,Liu BinORCID

Abstract

Accurately identifying potential piRNA-disease associations is of great importance in uncovering the pathogenesis of diseases. Recently, several machine-learning-based methods have been proposed for piRNA-disease association detection. However, they are suffering from the high sparsity of piRNA-disease association network and the Boolean representation of piRNA-disease associations ignoring the confidence coefficients. In this study, we propose a supplementarily weighted strategy to solve these disadvantages. Combined with Graph Convolutional Networks (GCNs), a novel predictor called iPiDA-SWGCN is proposed for piRNA-disease association prediction. There are three main contributions of iPiDA-SWGCN: (i) Potential piRNA-disease associations are preliminarily supplemented in the sparse piRNA-disease network by integrating various basic predictors to enrich network structure information. (ii) The original Boolean piRNA-disease associations are assigned with different relevance confidence to learn node representations from neighbour nodes in varying degrees. (iii) The experimental results show that iPiDA-SWGCN achieves the best performance compared with the other state-of-the-art methods, and can predict new piRNA-disease associations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference62 articles.

1. Developmental piRNA profiles of the invasive vector mosquito Aedes albopictus;P Liu;Parasites & vectors,2016

2. The coming of age for Piwi proteins;AG Seto;Molecular cell,2007

3. Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers;G Singh;PloS one,2018

4. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing;B Czech;Trends in biochemical sciences,2016

5. PIWI proteins and PIWI-interacting RNA: emerging roles in cancer;Y-N Han;Cellular Physiology and Biochemistry,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Databases and computational methods for the identification of piRNA-related molecules: A survey;Computational and Structural Biotechnology Journal;2024-12

2. CLPiDA: A Contrastive Learning Approach for Predicting Potential PiRNA-Disease Associations;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3