Metabolic symbiosis between oxygenated and hypoxic tumour cells: An agent-based modelling study

Author:

Jayathilake Pahala GedaraORCID,Victori Pedro,Pavillet Clara E.ORCID,Lee Chang HeonORCID,Voukantsis Dimitrios,Miar Ana,Arora Anjali,Harris Adrian L.,Morten Karl J.,Buffa Francesca M.

Abstract

Deregulated metabolism is one of the hallmarks of cancer. It is well-known that tumour cells tend to metabolize glucose via glycolysis even when oxygen is available and mitochondrial respiration is functional. However, the lower energy efficiency of aerobic glycolysis with respect to mitochondrial respiration makes this behaviour, namely the Warburg effect, counter-intuitive, although it has now been recognized as source of anabolic precursors. On the other hand, there is evidence that oxygenated tumour cells could be fuelled by exogenous lactate produced from glycolysis. We employed a multi-scale approach that integrates multi-agent modelling, diffusion-reaction, stoichiometric equations, and Boolean networks to study metabolic cooperation between hypoxic and oxygenated cells exposed to varying oxygen, nutrient, and inhibitor concentrations. The results show that the cooperation reduces the depletion of environmental glucose, resulting in an overall advantage of using aerobic glycolysis. In addition, the oxygen level was found to be decreased by symbiosis, promoting a further shift towards anaerobic glycolysis. However, the oxygenated and hypoxic populations may gradually reach quasi-equilibrium. A sensitivity analysis using Latin hypercube sampling and partial rank correlation shows that the symbiotic dynamics depends on properties of the specific cell such as the minimum glucose level needed for glycolysis. Our results suggest that strategies that block glucose transporters may be more effective to reduce tumour growth than those blocking lactate intake transporters.

Funder

H2020 European Research Council

Cancer Research UK

Wellcome Trust

Breast Cancer Research Foundation

Publisher

Public Library of Science (PLoS)

Reference61 articles.

1. Origin and evolution of metabolic pathways;R Fani;Phys Life Rev,2009

2. Cancer metabolism: looking forward.;I Martinez-Reyes;Nat Rev Cancer,2021

3. Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes;M Robertson-Tessi;Cancer Res,2015

4. Mathematical Modeling of the Function of Warburg Effect in Tumor Microenvironment.;M Shamsi;Sci Rep.,2018

5. Regulation of cancer cell metabolism;RA Cairns;Nat Rev Cancer,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3