Gradient boosted decision trees reveal nuances of auditory discrimination behavior

Author:

Griffiths Carla S.,Lebert Jules M.,Sollini Joseph,Bizley Jennifer K.ORCID

Abstract

Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word’s presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals’ ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token to token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets’ decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches.

Funder

Wellcome Trust

H2020 European Research Council

Research Councils UK

Publisher

Public Library of Science (PLoS)

Reference33 articles.

1. Mice alternate between discrete strategies during perceptual decision-making;ZC Ashwood;Nature Neuroscience,2022

2. Extracting the dynamics of behavior in sensory decision-making experiments;International Brain Laboratory;Neuron,2021

3. Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on tabular data?; 2022. Available from: http://arxiv.org/abs/2207.08815.

4. Pitch and Auditory Grouping

5. The role of spectral cues in timbre discrimination by ferrets and humans;SM Town;The Journal of the Acoustical Society of America,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3