Insights into muscle metabolic energetics: Modelling muscle-tendon mechanics and metabolic rates during walking across speeds

Author:

Luis IsraelORCID,Afschrift Maarten,De Groote Friedl,Gutierrez-Farewik Elena M.ORCID

Abstract

The metabolic energy rate of individual muscles is impossible to measure without invasive procedures. Prior studies have produced models to predict metabolic rates based on experimental observations of isolated muscle contraction from various species. Such models can provide reliable predictions of metabolic rates in humans if muscle properties and control are accurately modeled. This study aimed to examine how muscle-tendon model individualization and metabolic energy models influenced estimation of muscle-tendon states and time-series metabolic rates, to evaluate the agreement with empirical data, and to provide predictions of the metabolic rate of muscle groups and gait phases across walking speeds. Three-dimensional musculoskeletal simulations with prescribed kinematics and dynamics were performed. An optimal control formulation was used to compute muscle-tendon states with four levels of individualization, ranging from a scaled generic model and muscle controls based on minimal activations, inclusion of calibrated muscle passive forces, personalization of Achilles and quadriceps tendon stiffnesses, to finally informing muscle controls with electromyography. We computed metabolic rates based on existing models. Simulations with calibrated passive forces and personalized tendon stiffness most accurately estimate muscle excitations and fiber lengths. Interestingly, the inclusion of electromyography did not improve our estimates. The whole-body average metabolic cost was better estimated with a subset of metabolic energy models. We estimated metabolic rate peaks near early stance, pre-swing, and initial swing at all walking speeds. Plantarflexors accounted for the highest cost among muscle groups at the preferred speed and were similar to the cost of hip adductors and abductors combined. Also, the swing phase accounted for slightly more than one-quarter of the total cost in a gait cycle, and its relative cost decreased with walking speed. Our prediction might inform the design of assistive devices and rehabilitation treatment. The code and experimental data are available online.

Funder

Vetenskapsrådet

Stiftelsen Promobilia

Publisher

Public Library of Science (PLoS)

Reference70 articles.

1. The energy expenditure of normal and pathologic gait.;RL Waters;Gait Posture.,1999

2. Reducing the energy cost of human walking using an unpowered exoskeleton;SH Collins;Nature,2015

3. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.;EM McCain;J Neuroeng Rehabil,2019

4. Derivation of formulae used to calculate energy expenditure in man.;JM Brockway;Hum Nutr Clin Nutr,1987

5. Energetics (and Mechanical Determinants) of Sprint and Shuttle Running.;P Zamparo;Int J Sports Med.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3