Epidemiological and evolutionary consequences of different types of CRISPR-Cas systems

Author:

Chabas HélèneORCID,Müller ViktorORCID,Bonhoeffer SebastianORCID,Regoes Roland R.ORCID

Abstract

Bacteria have adaptive immunity against viruses (phages) in the form of CRISPR-Cas immune systems. Currently, 6 types of CRISPR-Cas systems are known and the molecular study of three of these has revealed important molecular differences. It is unknown if and how these molecular differences change the outcome of phage infection and the evolutionary pressure the CRISPR-Cas systems faces. To determine the importance of these molecular differences, we model a phage outbreak entering a population defending exclusively with a type I/II or a type III CRISPR-Cas system. We show that for type III CRISPR-Cas systems, rapid phage extinction is driven by the probability to acquire at least one resistance spacer. However, for type I/II CRISPR-Cas systems, rapid phage extinction is characterized by an a threshold-like behaviour: any acquisition probability below this threshold leads to phage survival whereas any acquisition probability above it, results in phage extinction. We also show that in the absence of autoimmunity, high acquisition rates evolve. However, when CRISPR-Cas systems are prone to autoimmunity, intermediate levels of acquisition are optimal during a phage outbreak. As we predict an optimal probability of spacer acquisition 2 factors of magnitude above the one that has been measured, we discuss the origin of such a discrepancy. Finally, we show that in a biologically relevant parameter range, a type III CRISPR-Cas system can outcompete a type I/II CRISPR-Cas system with a slightly higher probability of acquisition.

Funder

ETH Postodoctoral Fellowship

National Research, Development and Innovation Office of Hungary

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

1. How do adaptive immune systems control pathogens while avoiding autoimmunity?;CT Bergstrom;Trends in ecology & evolution,2006

2. An evolutionary perspective on the systems of adaptive immunity;V Müller;Biological Reviews,2018

3. Bacteriophage resistance mechanisms;SJ Labrie;Nature Reviews Microbiology,2010

4. CRISPR provides acquired resistance against viruses in prokaryotes;R Barrangou;Science,2007

5. Diversity, classification and evolution of CRISPR-Cas systems;EV Koonin;Current opinion in microbiology,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3