Evidence for influenza and RSV interaction from 10 years of enhanced surveillance in Nha Trang, Vietnam, a modelling study

Author:

Waterlow Naomi R.ORCID,Toizumi MichikoORCID,van Leeuwen EdwinORCID,Thi Nguyen Hien-Anh,Myint-Yoshida Lay,Eggo Rosalind M.ORCID,Flasche StefanORCID

Abstract

Influenza and Respiratory Syncytial Virus (RSV) interact within their host posing the concern for impacts on heterologous viruses following vaccination. We aimed to estimate the population level impact of their interaction. We developed a dynamic age-stratified two-pathogen mathematical model that includes pathogen interaction through competition for infection and enhanced severity of dual infections. We used parallel tempering to fit its parameters to 11 years of enhanced hospital-based surveillance for acute respiratory illnesses (ARI) in children under 5 years old in Nha Trang, Vietnam. The data supported either a 41% (95%CrI: 36–54) reduction in susceptibility following infection and for 10.0 days (95%CrI 7.1–12.8) thereafter, or no change in susceptibility following infection. We estimate that co-infection increased the probability for an infection in <2y old children to be reported 7.2 fold (95%CrI 5.0–11.4); or 16.6 fold (95%CrI 14.5–18.4) in the moderate or low interaction scenarios. Absence of either pathogen was not to the detriment of the other. We find stronger evidence for severity enhancing than for acquisition limiting interaction. In this setting vaccination against either pathogen is unlikely to have a major detrimental effect on the burden of disease caused by the other.

Funder

Medical Research Council

National Institute for Health Research

Horizon 2020

Wellcome Trust and Royal Soceity

HDR UK

Japan Program for Infectious Diseases Research and Infrastructure and Japan Agency for Medical Research and Development

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3