Estimating neuronal firing density: A quantitative analysis of firing rate map algorithms

Author:

Grieves Roddy M.ORCID

Abstract

The analysis of neurons that exhibit receptive fields dependent on an organism’s spatial location, such as grid, place or boundary cells typically begins by mapping their activity in space using firing rate maps. However, mapping approaches are varied and depend on multiple tuning parameters that are usually chosen qualitatively by the experimenter and thus vary significantly across studies. Small changes in parameters such as these can impact results significantly, yet, to date a quantitative investigation of firing rate maps has not been attempted. Using simulated datasets, we examined how tuning parameters, recording duration and firing field size affect the accuracy of spatial maps generated using the most widely used approaches. For each approach we found a clear subset of parameters which yielded low-error firing rate maps and isolated the parameters yielding 1) the least error possible and 2) the Pareto-optimal parameter set which balanced error, computation time, place field detection accuracy and the extrapolation of missing values. Smoothed bivariate histograms and averaged shifted histograms were consistently associated with the fastest computation times while still providing accurate maps. Adaptive smoothing and binning approaches were found to compensate for low positional sampling the most effectively. Kernel smoothed density estimation also compensated for low sampling well and resulted in accurate maps, but it was also among the slowest methods tested. Overall, the bivariate histogram, coupled with spatial smoothing, is likely the most desirable method in the majority of cases.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3