On-target inhibition of Cryptosporidium parvum by nitazoxanide (NTZ) and paclitaxel (PTX) validated using a novel MDR1-transgenic host cell model and algorithms to quantify the effect on the parasite target

Author:

Yang Bo,Yan Yueyang,Wang Dongqiang,Zhang Ying,Yin Jigang,Zhu GuanORCID

Abstract

Cryptosporidium parvum is a globally distributed zoonotic protozoan parasite that causes moderate to severe, sometime deadly, watery diarrhea in humans and animals, for which fully effective treatments are yet unavailable. In studying the mechanism of action of drugs against intracellular pathogens, it is important to validate whether the observed anti-infective activity is attributed to the drug action on the pathogen or host target. For the epicellular parasite Cryptosporidium, we have previously developed a concept that the host cells with significantly increased drug tolerance by transient overexpression of the multidrug resistance protein-1 (MDR1) could be utilized to evaluate whether and how much the observed anti-cryptosporidial activity of an inhibitor was attributed to the inhibitor’s action on the parasite target. However, the transient transfection model was only applicable to evaluating native MDR1 substrates. Here we report an advanced model using stable MDR1-transgenic HCT-8 cells that allows rapid development of novel resistance to non-MDR1 substrates by multiple rounds of drug selection. Using the new model, we successfully validated that nitazoxanide, a non-MDR1 substrate and the only FDA-approved drug to treat human cryptosporidiosis, killed C. parvum by fully (100%) acting on the parasite target. We also confirmed that paclitaxel acted fully on the parasite target, while several other inhibitors including mitoxantrone, doxorubicin, vincristine and ivermectin acted partially on the parasite targets. Additionally, we developed mathematical models to quantify the proportional contribution of the on-parasite-target effect to the observed anti-cryptosporidial activity and to evaluate the relationships between several in vitro parameters, including antiparasitic efficacy (ECi), cytotoxicity (TCi), selectivity index (SI) and Hill slope (h). Owning to the promiscuity of the MDR1 efflux pump, the MDR1-transgenic host cell model could be applied to assess the on-parasite-target effects of newly identified hits/leads, either substrates or non-substrates of MDR1, against Cryptosporidium or other epicellular pathogens.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3