Schistosoma mansoni egg-derived thioredoxin and Sm14 drive the development of IL-10 producing regulatory B cells

Author:

Chayé Mathilde A. M.ORCID,Gasan Thomas A.,Ozir-Fazalalikhan Arifa,Scheenstra Maaike R.,Zawistowska-Deniziak Anna,van Hengel Oscar R. J.,Gentenaar Max,Manurung Mikhael D.,Harvey Michael R.,Codée Jeroen D. C.,Chiodo Fabrizio,Heijke Anouk M.,Kalinowska Alicja,van Diepen Angela,Hensbergen Paul J.,Yazdanbakhsh Maria,Guigas Bruno,Hokke Cornelis H.,Smits Hermelijn H.ORCID

Abstract

During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.

Funder

Lung Foundation Netherlands

zonMW

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3