Natural statin derivatives as potential therapy to reduce intestinal fluid loss in cholera

Author:

Noitem Rattikarn,Pongkorpsakol Pawin,Changsen Chartchai,Sukpondma Yaowapa,Tansakul Chittreeya,Rukachaisirikul Vatcharin,Muanprasat Chatchai

Abstract

As a leading cause of death in children under 5 years old, secretory diarrheas including cholera are characterized by excessive intestinal fluid secretion driven by enterotoxin-induced cAMP-dependent intestinal chloride transport. This study aimed to identify fungal bioactive metabolites possessing anti-secretory effects against cAMP-dependent chloride secretion in intestinal epithelial cells. Using electrophysiological analyses in human intestinal epithelial (T84) cells, five fungus-derived statin derivatives including α,β-dehydrolovastatin (DHLV), α,β-dehydrodihydromonacolin K, lovastatin, mevastatin and simvastatin were found to inhibit the cAMP-dependent chloride secretion with IC50 values of 1.8, 8.9, 11.9, 11.4 and 5 μM, respectively. Being the most potent statin derivatives, DHLV was evaluated for its pharmacological properties including cellular toxicity, mechanism of action, target specificity and in vivo efficacy. DHLV at concentrations up to 20 μM did not affect cell viability and barrier integrity of T84 cells. Electrophysiological analyses indicated that DHLV inhibited cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent apical chloride channel, via mechanisms not involving alteration of intracellular cAMP levels or its negative regulators including AMP-activated protein kinases and protein phosphatases. DHLV had no effect on Na+-K+ ATPase activities but inhibited Ca2+-dependent chloride secretion without affecting intracellular Ca2+ levels. Importantly, intraperitoneal (2 mg/kg) and intraluminal (20 μM) injections of DHLV reduced cholera toxin-induced intestinal fluid secretion in mice by 59% and 65%, respectively without affecting baseline intestinal fluid transport. This study identifies natural statin derivatives as novel natural product-derived CFTR inhibitors, which may be beneficial in the treatment of enterotoxin-induced secretory diarrheas including cholera.

Funder

Crown Property Bureau and the National Science and Technology Development Agency

Mahidol University

Program Management Unit for Human Resources & Institutional Development, Research and Innovation

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference48 articles.

1. Cholera: pathophysiology and emerging therapeutic targets.;C Muanprasat;Future Med Chem,2013

2. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea;S Das;Cell Mol Gastroenterol Hepatol,2018

3. Secretory diarrhoea: mechanisms and emerging therapies.;JR Thiagarajah;Nat Rev Gastroenterol Hepatol,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3