The polymorphic landscape analysis of GATA1 exons uncovered the genetic variants associated with higher thrombocytopenia in dengue patients

Author:

Al Rimon Razoan,Sayem MohammadORCID,Alam Saruar,Al Saba Abdullah,Sanyal Mousumi,Amin Md. Robed,Kabir AhmedulORCID,Chakraborty Sajib,Nabi A. H. M. NurunORCID

Abstract

The current study elucidated an association between gene variants and thrombocytopenia through the investigation of the exonic polymorphic landscape of hematopoietic transcription factor—GATA1 gene in dengue patients. A total of 115 unrelated dengue patients with dengue fever (DF) (N = 91) and dengue hemorrhagic fever (DHF) (N = 24) were included in the study. All dengue patients were confirmed through detection of NS1 antigen, IgM, and IgG antibodies against the dengue virus. Polymerase chain reaction using specific primers amplified the exonic regions of GATA1 while Sanger sequencing and chromatogram analyses facilitated the identification of variants. Variants G>A (at chX: 48792009) and C>A (at chX: 4879118) had higher frequency out of 13 variants identified (3 annotated and 10 newly recognized). Patients carrying either nonsynonymous or synonymous variants had significantly lower mean values of platelets compared to those harboring the reference nucleotides (NC_000023.11). Further analyses revealed that the change in amino acid residue leads to the altered three-dimensional structure followed by interaction with neighboring residues. Increased stability of the protein due to substitution of serine by asparagine (S129N at chX: 48792009) may cause increased rigidity followed by reduced structural flexibility which may ultimately disturb the dimerization (an important prerequisite for GATA1 to perform its biological activity) process of the GATA1 protein. This, in turn, may affect the function of GATA1 followed by impaired production of mature platelets which may be reflected by the lower platelet counts in individuals with such variation. In summary, we have identified new variants within the GATA1 gene which were found to be clinically relevant to the outcome of dengue patients and thus, have the potential as candidate biomarkers for the determination of severity and prognosis of thrombocytopenia caused by dengue virus. However, further validation of this study in a large number of dengue patients is warranted. Trial Registration: number SLCTR/2019/037.

Funder

Incepta Pharmaceuticals Limited, Bangladesh

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference50 articles.

1. The global distribution and burden of dengue;S Bhatt;Nature,2013

2. Extrinsic {Incubation} {Period} of {Dengue}: {Knowledge}, {Backlog}, and {Applications} of {Temperature} {Dependence};NB Tjaden;PLoS Negl Trop Dis,2013

3. Plasma leakage in dengue haemorrhagic fever;A. Srikiatkhachorn;Thromb Haemost,2009

4. Upper gastrointestinal bleeding in dengue fever;C-J -J Tsai;Am J Gastroenterol,1991

5. Idiopathic thrombocytopenic purpura;L Kayal;Contemp Clin Dent,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3