Trichomonas vaginalis adherence phenotypes and extracellular vesicles impact parasite survival in a novel in vivo model of pathogenesis

Author:

Molgora Brenda M.,Mukherjee Sandip Kumar,Baumel-Alterzon Sharon,Santiago Fernanda M.,Muratore Katherine A.,Sisk Anthony E.,Mercer Frances,Johnson Patricia J.ORCID

Abstract

Trichomonas vaginalis is a human infective parasite responsible for trichomoniasis–the most common, non-viral, sexually transmitted infection worldwide. T. vaginalis resides exclusively in the urogenital tract of both men and women. In women, T. vaginalis has been found colonizing the cervix and vaginal tract while in men it has been identified in the upper and lower urogenital tract and in secreted fluids such as semen, urethral discharge, urine, and prostatic fluid. Despite the over 270 million cases of trichomoniasis annually worldwide, T. vaginalis continues to be a highly neglected organism and thus poorly studied. Here we have developed a male mouse model for studying T. vaginalis pathogenesis in vivo by delivering parasites into the murine urogenital tract (MUT) via transurethral catheterization. Parasite burden was assessed ex-vivo using a nanoluciferase-based gene expression assay which allowed quantification of parasites pre- and post-inoculation. Using this model and read-out approach, we show that T. vaginalis can be found within MUT tissue up to 72 hrs post-inoculation. Furthermore, we also demonstrate that parasites that exhibit increased parasite adherence in vitro also have higher parasite burden in mice in vivo. These data provide evidence that parasite adherence to host cells aids in parasite persistence in vivo and molecular determinants found to correlate with host cell adherence in vitro are applicable to infection in vivo. Finally, we show that co-inoculation of T. vaginalis extracellular vesicles (TvEVs) and parasites results in higher parasite burden in vivo. These findings confirm our previous in vitro-based predictions that TvEVs assist the parasite in colonizing the host. The establishment of this pathogenesis model for T. vaginalis sets the stage for identifying and examining parasite factors that contribute to and influence infection outcomes.

Funder

NIH

UCLA

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Foundation

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Reference75 articles.

1. Trichomoniasis;JR Schwebke;Clin Microbiol Rev,2004

2. Global incidence and prevalence of selected curable sexually transmitted infections: 2008.;World Health Organization;Reprod Health Matters,2012

3. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016;J Rowley;Bull World Health Organ,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3