Taenia solium excretory secretory proteins (ESPs) suppresses TLR4/AKT mediated ROS formation in human macrophages via hsa-miR-125

Author:

Arora Naina,Keshri Anand K.,Kaur Rimanpreet,Rawat Suraj S.,Kumar Rajiv,Mishra Amit,Prasad AmitORCID

Abstract

Background Helminth infections are a global health menace affecting 24% of the world population. They continue to increase global disease burden as their unclear pathology imposes serious challenges to patient management. Neurocysticercosis is classified as neglected tropical disease and is caused by larvae of helminthic cestode Taenia solium. The larvae infect humans and localize in central nervous system and cause NCC; a leading etiological agent of acquired epilepsy in the developing world. The parasite has an intricate antigenic make-up and causes active immune suppression in the residing host. It communicates with the host via its secretome which is complex mixture of proteins also called excretory secretory products (ESPs). Understanding the ESPs interaction with host can identify therapeutic intervention hot spots. In our research, we studied the effect of T. solium ESPs on human macrophages and investigated the post-translation switch involved in its immunopathogenesis. Methodology T. solium cysts were cultured in vitro to get ESPs and used for treating human macrophages. These macrophages were studied for cellular signaling and miR expression and quantification at transcript and protein level. Conclusion We found that T. solium cyst ESPs treatment to human macrophages leads to activation of Th2 immune response. A complex cytokine expression by macrophages was also observed with both Th1 and Th2 cytokines in milieu. But, at the same time ESPs modulated the macrophage function by altering the host miR expression as seen with altered ROS activity, apoptosis and phagocytosis. This leads to activated yet compromised functional macrophages, which provides a niche to support parasite survival. Thus T. solium secretome induces Th2 phenomenon in macrophages which may promote parasite’s survival and delay their recognition by host immune system.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Science Engineering Research Board

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3