Hookworms dynamically respond to loss of Type 2 immune pressure

Author:

Ferguson Annabel A.,Inclan-Rico Juan M.,Lu Dihong,Bobardt Sarah D.,Hung LiYin,Gouil Quentin,Baker Louise,Ritchie Matthew E.,Jex Aaron R.,Schwarz Erich M.,Rossi Heather L.,Nair Meera G.,Dillman Adler R.,Herbert De’Broski R.ORCID

Abstract

The impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6). This study investigated whether serial passage of the rodent hookworm Nippostrongylus brasiliensis in STAT6-deficient mice (STAT6 KO) caused changes in parasites over time. After adaptation to STAT6 KO hosts, N. brasiliensis increased their reproductive output, feeding capacity, energy content, and body size. Using an improved N. brasiliensis genome, we found that these physiological changes corresponded with a dramatic shift in the transcriptional landscape, including increased expression of gene pathways associated with egg production, but a decrease in genes encoding neuropeptides, proteases, SCP/TAPS proteins, and transthyretin-like proteins; the latter three categories have been repeatedly observed in hookworm excreted/secreted proteins (ESPs) implicated in immunosuppression. Although transcriptional changes started to appear in the first generation of passage in STAT6 KO hosts for both immature and mature adult stages, downregulation of the genes putatively involved in immunosuppression was only observed after multiple generations in this immunodeficient environment. When STAT6 KO-adapted N. brasiliensis were reintroduced to a naive WT host after up to 26 generations, this progressive change in host-adaptation corresponded to increased production of inflammatory cytokines by the WT host. Surprisingly, however, this single exposure of STAT6 KO-adapted N. brasiliensis to WT hosts resulted in worms that were morphologically and transcriptionally indistinguishable from WT-adapted parasites. This work uncovers remarkable plasticity in the ability of hookworms to adapt to their hosts, which may present a general feature of parasitic nematodes.

Funder

National Science Foundation

National Institute of Allergy and Infectious Diseases

Cornell University

National Institutes of Health

Australian Research Council

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3