A noninvasive BCG skin challenge model for assessing tuberculosis vaccine efficacy

Author:

Krishnan Nitya,Priestman Miles,Uhía Iria,Charitakis Natalie,Glegola-Madejska Izabella T.,Baer Thomas M.,Tranberg Albin,Faraj Alan,Simonsson Ulrika SH,Robertson Brian D.ORCID

Abstract

We report here on the characterisation in mice of a noninvasive bacille Calmette-Guérin (BCG) skin challenge model for assessing tuberculosis (TB) vaccine efficacy. Controlled human infection models (CHIMs) are valuable tools for assessing the relevant biological activity of vaccine candidates, with the potential to accelerate TB vaccine development into the clinic. TB infection poses significant constraints on the design of a CHIM using the causative agent Mycobacterium tuberculosis (Mtb). A safer alternative is a challenge model using the attenuated vaccine agent Mycobacterium bovis BCG as a surrogate for Mtb, and intradermal (skin) challenge as an alternative to pulmonary infection. We have developed a unique noninvasive imaging system based on fluorescent reporters (FluorBCG) to quantitatively measure bacterial load over time, thereby determining a relevant biological vaccine effect. We assessed the utility of this model to measure the effectiveness of 2 TB vaccines: the currently licenced BCG and a novel subunit vaccine candidate. To assess the efficacy of the skin challenge model, a nonlinear mixed-effects models was built describing the decline of fluorescence over time. The model-based analysis identified that BCG vaccination reduced the fluorescence readout of both fluorophores compared to unvaccinated mice (p < 0.001). However, vaccination with the novel subunit candidate did not alter the fluorescence decline compared to unvaccinated mice (p > 0.05). BCG-vaccinated mice that showed the reduced fluorescent readout also had a reduced bacterial burden in the lungs when challenged with Mtb. This supports the fluorescence activity in the skin as a reflection of vaccine induced functional pulmonary immune responses. This novel noninvasive approach allows for repeated measurements from the challenge site, providing a dynamic readout of vaccine induced responses over time. This BCG skin challenge model represents an important contribution to the ongoing development of controlled challenge models for TB.

Funder

Aeras Global Tuberculosis Vaccine Foundation

Bill and Melinda Gates Foundation

Publisher

Public Library of Science (PLoS)

Reference52 articles.

1. Adolescent tuberculosis.;KJ Snow;Lancet Child Adolesc Heal,2020

2. The incidence of tuberculosis among adolescents and young adults: a global estimate;KJ Snow;Eur Respir J,2018

3. Implementing the end TB strategy: the essentials;World Health Organization,2022

4. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial;MD Tameris;Lancet,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3