A taxon-restricted duplicate of Iroquois3 is required for patterning the spider waist

Author:

Setton Emily V. W.ORCID,Ballesteros Jesús A.,Blaszczyk Pola O.,Klementz Benjamin C.,Sharma Prashant P.

Abstract

The chelicerate body plan is distinguished from other arthropod groups by its division of segments into 2 tagmata: the anterior prosoma (“cephalothorax”) and the posterior opisthosoma (“abdomen”). Little is understood about the genetic mechanisms that establish the prosomal-opisthosomal (PO) boundary. To discover these mechanisms, we created high-quality genomic resources for the large-bodied spider Aphonopelma hentzi. We sequenced specific territories along the antero-posterior axis of developing embryos and applied differential gene expression analyses to identify putative regulators of regional identity. After bioinformatic screening for candidate genes that were consistently highly expressed in only 1 tagma (either the prosoma or the opisthosoma), we validated the function of highly ranked candidates in the tractable spider model Parasteatoda tepidariorum. Here, we show that an arthropod homolog of the Iroquois complex of homeobox genes is required for proper formation of the boundary between arachnid tagmata. The function of this homolog had not been previously characterized, because it was lost in the common ancestor of Pancrustacea, precluding its investigation in well-studied insect model organisms. Knockdown of the spider copy of this gene, which we designate as waist-less, in P. tepidariorum resulted in embryos with defects in the PO boundary, incurring discontinuous spider germ bands. We show that waist-less is required for proper specification of the segments that span the prosoma-opisthosoma boundary, which in adult spiders corresponds to the narrowed pedicel. Our results demonstrate the requirement of an ancient, taxon-restricted paralog for the establishment of the tagmatic boundary that defines Chelicerata.

Funder

National Science Foundation

Publisher

Public Library of Science (PLoS)

Reference75 articles.

1. Parallel evolution of segmentation by co-option of ancestral gene regulatory networks;A. Chipman;BioEssays,2010

2. Gene regulatory networks and the evolution of animal body plans;EH Davidson;Science,2006

3. Butterfly eyespots evolved via cooption of an ancestral gene-regulatory network that also patterns antennae, legs, and wings;SN Murugesan;Proc Natl Acad Sci,2022

4. Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms;R Stahi;Proc Biol Sci,2016

5. Early development and segment formation in the centipede, Strigamia maritima (Geophilomorpha).;AD Chipman;Evol Dev.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3