Wolbachia endosymbionts manipulate the self-renewal and differentiation of germline stem cells to reinforce fertility of their fruit fly host

Author:

Russell Shelbi L.ORCID,Castillo Jennie Ruelas,Sullivan William T.

Abstract

The alphaproteobacterium Wolbachia pipientis infects arthropod and nematode species worldwide, making it a key target for host biological control. Wolbachia-driven host reproductive manipulations, such as cytoplasmic incompatibility (CI), are credited for catapulting these intracellular bacteria to high frequencies in host populations. Positive, perhaps mutualistic, reproductive manipulations also increase infection frequencies, but are not well understood. Here, we identify molecular and cellular mechanisms by which Wolbachia influences the molecularly distinct processes of germline stem cell (GSC) self-renewal and differentiation. We demonstrate that wMel infection rescues the fertility of flies lacking the translational regulator mei-P26 and is sufficient to sustain infertile homozygous mei-P26-knockdown stocks indefinitely. Cytology revealed that wMel mitigates the impact of mei-P26 loss through restoring proper pMad, Bam, Sxl, and Orb expression. In Oregon R files with wild-type fertility, wMel infection elevates lifetime egg hatch rates. Exploring these phenotypes through dual-RNAseq quantification of eukaryotic and bacterial transcripts revealed that wMel infection rescues and offsets many gene expression changes induced by mei-P26 loss at the mRNA level. Overall, we show that wMel infection beneficially reinforces host fertility at mRNA, protein, and phenotypic levels, and these mechanisms may promote the emergence of mutualism and the breakdown of host reproductive manipulations.

Funder

UCSC Chancellor's Postdoctoral Fellowship

NIH NIGMS

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference99 articles.

1. Transmission efficiency drives host–microbe associations;PT Leftwich;Proc R Soc B Biol Sci,2020

2. A complex journey: transmission of microbial symbionts;M Bright;Nat Rev Microbiol,2010

3. Efficacy of Wolbachia-Infected Mosquito Deployments for the Control of Dengue;A Utarini;N Engl J Med,2021

4. Evolution of transmission mode in obligate symbionts;DM Drown;Evol Ecol Res,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3