Neuronal ageing is promoted by the decay of the microtubule cytoskeleton

Author:

Okenve-Ramos PilarORCID,Gosling Rory,Chojnowska-Monga MonikaORCID,Gupta KritiORCID,Shields Samuel,Alhadyian Haifa,Collie Ceryce,Gregory Emilia,Sanchez-Soriano NataliaORCID

Abstract

Natural ageing is accompanied by a decline in motor, sensory, and cognitive functions, all impacting quality of life. Ageing is also the predominant risk factor for many neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s disease. We need to therefore gain a better understanding of the cellular and physiological processes underlying age-related neuronal decay. However, gaining this understanding is a slow process due to the large amount of time required to age mammalian or vertebrate animal models. Here, we introduce a new cellular model within the Drosophila brain, in which we report classical ageing hallmarks previously observed in the primate brain. These hallmarks include axonal swellings, cytoskeletal decay, a reduction in axonal calibre, and morphological changes arising at synaptic terminals. In the fly brain, these changes begin to occur within a few weeks, ideal to study the underlying mechanisms of ageing. We discovered that the decay of the neuronal microtubule (MT) cytoskeleton precedes the onset of other ageing hallmarks. We showed that the MT-binding factors Tau, EB1, and Shot/MACF1, are necessary for MT maintenance in axons and synapses, and that their functional loss during ageing triggers MT bundle decay, followed by a decline in axons and synaptic terminals. Furthermore, genetic manipulations that improve MT networks slowed down the onset of neuronal ageing hallmarks and confer aged specimens the ability to outperform age-matched controls. Our work suggests that MT networks are a key lesion site in ageing neurons and therefore the MT cytoskeleton offers a promising target to improve neuronal decay in advanced age.

Funder

Biotechnology and Biological Sciences Research Council

Wellcome Trust

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3