Abstract
Natural ageing is accompanied by a decline in motor, sensory, and cognitive functions, all impacting quality of life. Ageing is also the predominant risk factor for many neurodegenerative diseases, including Parkinson’s disease and Alzheimer’s disease. We need to therefore gain a better understanding of the cellular and physiological processes underlying age-related neuronal decay. However, gaining this understanding is a slow process due to the large amount of time required to age mammalian or vertebrate animal models. Here, we introduce a new cellular model within the Drosophila brain, in which we report classical ageing hallmarks previously observed in the primate brain. These hallmarks include axonal swellings, cytoskeletal decay, a reduction in axonal calibre, and morphological changes arising at synaptic terminals. In the fly brain, these changes begin to occur within a few weeks, ideal to study the underlying mechanisms of ageing. We discovered that the decay of the neuronal microtubule (MT) cytoskeleton precedes the onset of other ageing hallmarks. We showed that the MT-binding factors Tau, EB1, and Shot/MACF1, are necessary for MT maintenance in axons and synapses, and that their functional loss during ageing triggers MT bundle decay, followed by a decline in axons and synaptic terminals. Furthermore, genetic manipulations that improve MT networks slowed down the onset of neuronal ageing hallmarks and confer aged specimens the ability to outperform age-matched controls. Our work suggests that MT networks are a key lesion site in ageing neurons and therefore the MT cytoskeleton offers a promising target to improve neuronal decay in advanced age.
Funder
Biotechnology and Biological Sciences Research Council
Wellcome Trust
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献