Loss of the m6A methyltransferase METTL3 in monocyte-derived macrophages ameliorates Alzheimer’s disease pathology in mice

Author:

Yin Huilong,Ju Zhuan,Zheng Minhua,Zhang Xiang,Zuo Wenjie,Wang Yidi,Ding Xiaochen,Zhang Xiaofang,Peng Yingran,Li Jiadi,Yang Angang,Zhang Rui

Abstract

Alzheimer’s disease (AD) is a heterogeneous disease with complex clinicopathological characteristics. To date, the role of m6A RNA methylation in monocyte-derived macrophages involved in the progression of AD is unknown. In our study, we found that methyltransferase-like 3 (METTL3) deficiency in monocyte-derived macrophages improved cognitive function in an amyloid beta (Aβ)-induced AD mouse model. The mechanistic study showed that that METTL3 ablation attenuated the m6A modification in DNA methyltransferase 3A (Dnmt3a) mRNAs and consequently impaired YTH N6-methyladenosine RNA binding protein 1 (YTHDF1)-mediated translation of DNMT3A. We identified that DNMT3A bound to the promoter region of alpha-tubulin acetyltransferase 1 (Atat1) and maintained its expression. METTL3 depletion resulted in the down-regulation of ATAT1, reduced acetylation of α-tubulin and subsequently enhanced migration of monocyte-derived macrophages and Aβ clearance, which led to the alleviated symptoms of AD. Collectively, our findings demonstrate that m6A methylation could be a promising target for the treatment of AD in the future.

Funder

National Natural Science Foundation of China

Program for Ph.D. Starting Research Funding from Xinxiang Medical University

National Key Research and Development Program

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference63 articles.

1. Alzheimer’s disease;C Ballard;Lancet,2011

2. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics;J Hardy;Science,2002

3. The amyloid deposits in Alzheimer’s disease: their nature and pathogenesis;GG Glenner;Appl Pathol,1984

4. Alzheimer’s disease;DL Price;Annu Rev Med,1985

5. Post-transcriptional gene regulation by mRNA modifications;BS Zhao;Nat Rev Mol Cell Biol,2017

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3