Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions

Author:

Tuckute Greta,Feather Jenelle,Boebinger Dana,McDermott Josh H.ORCID

Abstract

Models that predict brain responses to stimuli provide one measure of understanding of a sensory system and have many potential applications in science and engineering. Deep artificial neural networks have emerged as the leading such predictive models of the visual system but are less explored in audition. Prior work provided examples of audio-trained neural networks that produced good predictions of auditory cortical fMRI responses and exhibited correspondence between model stages and brain regions, but left it unclear whether these results generalize to other neural network models and, thus, how to further improve models in this domain. We evaluated model-brain correspondence for publicly available audio neural network models along with in-house models trained on 4 different tasks. Most tested models outpredicted standard spectromporal filter-bank models of auditory cortex and exhibited systematic model-brain correspondence: Middle stages best predicted primary auditory cortex, while deep stages best predicted non-primary cortex. However, some state-of-the-art models produced substantially worse brain predictions. Models trained to recognize speech in background noise produced better brain predictions than models trained to recognize speech in quiet, potentially because hearing in noise imposes constraints on biological auditory representations. The training task influenced the prediction quality for specific cortical tuning properties, with best overall predictions resulting from models trained on multiple tasks. The results generally support the promise of deep neural networks as models of audition, though they also indicate that current models do not explain auditory cortical responses in their entirety.

Funder

NIDCD

Department of Brain and Cognitive Sciences, MIT

Amazon

American Association of University Women

US Department of Energy

McGovern Institute for Brain Research, Massachusetts Institute of Technology

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference172 articles.

1. Network model of shape-from-shading: neural function arises from both receptive and projective fields;SR Lehky;Nature,1988

2. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons;D Zipser;Nature,1988

3. Toward an integration of deep learning and neuroscience;AH Marblestone;Front Comput Neurosci [Internet].,2016

4. A deep learning framework for neuroscience;BA Richards;Nat Neurosci,2019

5. Deep neural network models of sensory systems: windows onto the role of task constraints;AJE Kell;Curr Opin Neurobiol,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3