High resolution data modifies intensive care unit dialysis outcome predictions as compared with low resolution administrative data set

Author:

Ziegler Jennifer,Rush Barret N. M.,Gottlieb Eric R.,Celi Leo Anthony,Armengol de la Hoz Miguel Ángel

Abstract

High resolution clinical databases from electronic health records are increasingly being used in the field of health data science. Compared to traditional administrative databases and disease registries, these newer highly granular clinical datasets offer several advantages, including availability of detailed clinical information for machine learning and the ability to adjust for potential confounders in statistical models. The purpose of this study is to compare the analysis of the same clinical research question using an administrative database and an electronic health record database. The Nationwide Inpatient Sample (NIS) was used for the low-resolution model, and the eICU Collaborative Research Database (eICU) was used for the high-resolution model. A parallel cohort of patients admitted to the intensive care unit (ICU) with sepsis and requiring mechanical ventilation was extracted from each database. The primary outcome was mortality and the exposure of interest was the use of dialysis. In the low resolution model, after controlling for the covariates that are available, dialysis use was associated with an increased mortality (eICU: OR 2.07, 95% CI 1.75–2.44, p<0.01; NIS: OR 1.40, 95% CI 1.36–1.45, p<0.01). In the high-resolution model, after the addition of the clinical covariates, the harmful effect of dialysis on mortality was no longer significant (OR 1.04, 95% 0.85–1.28, p = 0.64). The results of this experiment show that the addition of high resolution clinical variables to statistical models significantly improves the ability to control for important confounders that are not available in administrative datasets. This suggests that the results from prior studies using low resolution data may be inaccurate and may need to be repeated using detailed clinical data.

Funder

National Institute of Health

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3