Development of a dynamic prediction model for unplanned ICU admission and mortality in hospitalized patients

Author:

Placido DavideORCID,Thorsen-Meyer Hans-Christian,Kaas-Hansen Benjamin SkovORCID,Reguant RocORCID,Brunak SørenORCID

Abstract

Frequent assessment of the severity of illness for hospitalized patients is essential in clinical settings to prevent outcomes such as in-hospital mortality and unplanned admission to the intensive care unit (ICU). Classical severity scores have been developed typically using relatively few patient features. Recently, deep learning-based models demonstrated better individualized risk assessments compared to classic risk scores, thanks to the use of aggregated and more heterogeneous data sources for dynamic risk prediction. We investigated to what extent deep learning methods can capture patterns of longitudinal change in health status using time-stamped data from electronic health records. We developed a deep learning model based on embedded text from multiple data sources and recurrent neural networks to predict the risk of the composite outcome of unplanned ICU transfer and in-hospital death. The risk was assessed at regular intervals during the admission for different prediction windows. Input data included medical history, biochemical measurements, and clinical notes from a total of 852,620 patients admitted to non-intensive care units in 12 hospitals in Denmark’s Capital Region and Region Zealand during 2011–2016 (with a total of 2,241,849 admissions). We subsequently explained the model using the Shapley algorithm, which provides the contribution of each feature to the model outcome. The best model used all data modalities with an assessment rate of 6 hours, a prediction window of 14 days and an area under the receiver operating characteristic curve of 0.898. The discrimination and calibration obtained with this model make it a viable clinical support tool to detect patients at higher risk of clinical deterioration, providing clinicians insights into both actionable and non-actionable patient features.

Funder

Novo Nordisk Fonden

Innovationsfonden

Grosserer Jakob Ehrenreich og Hustru Grete Ehrenreichs Fond

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3