Abstract
Background
IGF-1 is considered an important regulator of muscle protein synthesis. However, its role in stimulation of muscle protein synthesis by amino acids (AA) is not clear, despite pronounced alterations in IGF-1 mRNA expression and signaling in muscle tissues by feeding. This study evaluates the role of locally produced IGF-1 and IGF-1 signaling when skeletal muscle protein synthesis is activated by increased amino acid availability in confluent, non-proliferating cells.
Methods
L6 skeletal muscle cells were subjected to amino acid starvation (24 h, 0.14 mM) followed by 18 h amino acid refeeding in Low AA (0.28 mM) or High AA concentrations (9 mM). Protein synthesis rates were estimated by L-[U-14C]-phenylalanine incorporation into cellular proteins. IGF-1 and IGF-1 receptor mRNA expression were quantified by real time PCR. SiRNA knockdown, antibodies and chemical inhibitors were used to attenuate muscle IGF-1 production and signaling.
Results
High AA concentrations (9mM) increased IGF-1 mRNA expression (+ 30%, p<0.05) and increased L-[U-14C]-phenylalanine incorporation compared to Low AA in confluent, non-proliferating muscle cells. Blocking IGF-1 signaling by chemical inhibitors reduced IGF-1 mRNA upregulation (~50%, p< 0.01), without decrease of protein synthesis. SiRNA knockdown of IGF-1 reduced protein synthesis, mainly explained by reduced cell proliferation. High AA or IGF-1 inhibitors did not change IGF-1 receptor mRNA expressions.
Conclusion
Amino acids increased IGF-1 mRNA expression and stimulated muscle protein synthesis. However, simultaneous upregulation of IGF-1 mRNA did not relate to increased protein synthesis by amino acids. The results indicate that increased IGF-1 mRNA expression is rather a covariate to amino acid initiation of protein synthesis in non-proliferating muscle cells; effects that may be related to unrecognized metabolic activities, such as transport of amino acids.
Funder
Cancerfonden
Magnus Bergvalls Stiftelse
Stiftelserna Wilhelm och Martina Lundgrens
Stiftelsen Assar Gabrielssons Fond
Lisa och Johan Grönbergs Stiftelse
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献