Abstract
Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P), thereby regulating sucrose synthesis in plant cells. In general, plants contain a pair of PGI isozymes located in two distinct compartments of the cell (cytosol and plastid) with differences in both the primary structure and the higher-order structure. Previously, we showed that the activity of cytosolic PGI (PGIc) is more robust (activity, thermal stability, substrate turnover rate, etc.) than that of the plastid counterpart (PGIp) in multiple organisms, including wheat, rice, and Arabidopsis. The crystal structures of apoTaPGIc (an isotype cytosol PGIc in Triticum aestivum), TaPGIc-G6P complex, and apoTaPGIp (an isotype plastid PGIp in Triticum aestivum) were first solved in higher plants, especially in crops. In this study, we detailed the structural characteristics related to the biochemical properties and functions of TaPGIs in different plant organelles. We found that the C-terminal domains (CTDs) of TaPGIc and TaPGIp are very different, which affects the stability of the dimerized enzyme, and that Lys213TaPGIc/Lys193TaPGIp and its surrounding residues at the binding pocket gateway may participate in the entrance and exit of substrates. Our findings provide a good example illuminating the evolution of proteins from primary to higher structures as a result of physical barriers and adaptation to the biochemical environment.
Funder
National Natural Science Foundation of China
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献