Abstract
Background
Intraoperative neurophysiological monitoring is essential in neurosurgical procedures. In this study, we built and evaluated the performance of a deep neural network in differentiating between the presence and absence of a lateral spread response, which provides critical information during microvascular decompression surgery for the treatment of hemifacial spasm using intraoperatively acquired electromyography images.
Methods and findings
A total of 3,674 image screenshots of monitoring devices from 50 patients were prepared, preprocessed, and then adopted into training and validation sets. A deep neural network was constructed using current-standard, off-the-shelf tools. The neural network correctly differentiated 50 test images (accuracy, 100%; area under the curve, 0.96) collected from 25 patients whose data were never exposed to the neural network during training or validation. The accuracy of the network was equivalent to that of the neuromonitoring technologists (p = 0.3013) and higher than that of neurosurgeons experienced in hemifacial spasm (p < 0.0001). Heatmaps obtained to highlight the key region of interest achieved a level similar to that of trained human professionals. Provisional clinical application showed that the neural network was preferable as an auxiliary tool.
Conclusions
A deep neural network trained on a dataset of intraoperatively collected electromyography data could classify the presence and absence of the lateral spread response with equivalent performance to human professionals. Well-designated applications based upon the neural network may provide useful auxiliary tools for surgical teams during operations.
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献