Abstract
Predicting the admission scores of colleges and universities is significant for high school graduates in the College Entrance Examination in China (which is also called “Gaokao” for short). The practice of parallel application for the students after Gaokao not only puts forward a question about how students could make the best of their scores and make the best choice, but also results in the strong competition among different colleges and universities, with the institutions all striving to admit high-performing students in this examination. However, existing prevailing prediction algorithms and models of the admission score of the colleges and universities based on machine learning methods do not take such competitive relationship into consideration, but simply make predictions for individual college or university, causing low predication accuracy and poor generalization capability. This paper intends to analyze such competitive relationship by extracting the important features (e.g., project, location and score discrepancy) of colleges and universities. A novel competition model incorporating the coarse clustering is thus proposed to make the predictions for colleges and universities in a same cluster. By using Gaokao data of Shanxi province in China from 2016 to 2019, we testify the proposed model in comparison with several benchmark methods. The experimental results show that the precision within the error of 3 points and 5 points are 7.3% and 2.8% higher respectively than the second-best algorithm. It has proven that the competition model has the capability to fit the competitive relationship, thus improving the predication accuracy to a large extent. Theoretically, the method proposed could provide a more advanced and comprehensive view about the analysis of factors that may influence the admission score of higher institutions. Practically, the model proposed with high accuracy could help the students make the best of their scores and apply for the college and universities more scientifically.
Funder
National Natural Science Foundation of China
Special Project for the Central Guidance on Local Science and Technology Development of Sichuan Province
Publisher
Public Library of Science (PLoS)
Reference33 articles.
1. Gaokao: Far More Than an Exam;MDJ Pires;Revista Diadorim,2019
2. Comparison of Chinese Gaokao and Western University Undergraduate Admission Criteria: Australian ATAR as an Example;A Farley;Higher Education Research & Development,2020
3. Undergraduate Chinese Students’ Perspectives on Gaokao Examination: Strengths, Weaknesses, and Implications;A Muthanna;International Journal of Research Studies in Education,2015
4. Cheng G, Zhu W, Wang Z, Chen J, Qu Y. Taking Up the Gaokao Challenge: An Information Retrieval Approach. In: IJCAI. vol. 2016; 2016. p. 2479–2485.
5. EEZY: A Gaokao Recommendation System Using General Morphological Analysis Over Big Data;S Lu;Acta Morphologica Generalis AMG Vol,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献