MiR-130b modulates the invasive, migratory, and metastatic behavior of leiomyosarcoma

Author:

Danielson Laura S.,Guijarro Maria V.,Menendez Silvia,Higgins Brett,Sun Qiang,Mittal Khushbakhat,Popiolek Dorota A.,Overholtzer Michael,Palmer Glyn D.ORCID,Hernando Eva

Abstract

Leiomyosarcoma (LMS) is an aggressive, often poorly differentiated cancer of the smooth muscle (SM) lineage for which the molecular drivers of transformation and progression are poorly understood. In microRNA (miRNA) profiling studies, miR-130b was previously found to be upregulated in LMS vs. normal SM, and down-regulated during the differentiation of mesenchymal stem cells (MSCs) into SM, suggesting a role in LMS tumor progression. In the present study, the effects of miR-130b on human LMS tumorigenesis were investigated. Stable miR-130b overexpression enhanced invasion of LMS cells in vitro, and led to the formation of undifferentiated, pleomorphic tumors in vivo, with increased growth and metastatic potential compared to control LMS cells. TSC1 was identified as a direct miR-130b target in luciferase-3’UTR assays, and shRNA-mediated knockdown of TSC1 replicated miR-130b effects. Loss-of-function and gain-of-function studies showed that miR-130b levels regulate cell morphology and motility. Following miR-130b suppression, LMS cells adopted a rounded morphology, amoeboid mode of cell movement and enhanced invasive capacity that was Rho/ROCK dependent. Conversely, miR-130b-overexpressing LMS cells exhibited Rho-independent invasion, accompanied by down-regulation of Rho-pathway effectors. In mesenchymal stem cells, both miR-130b overexpression and TSC1 silencing independently impaired SM differentiation in vitro. Together, the data reveal miR-130b as a pro-oncogenic miRNA in LMS and support a miR-130b-TSC1 regulatory network that enhances tumor progression via inhibition of SM differentiation.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

American Cancer Society

Edna's Foundation of Hope

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3