Design of a novel multi-epitope vaccine candidate against hepatitis C virus using structural and nonstructural proteins: An immunoinformatics approach

Author:

Behmard Esmaeil,Abdulabbas Hussein T.,Abdalkareem Jasim Saade,Najafipour Sohrab,Ghasemian AbdolmajidORCID,Farjadfar Akbar,Barzegari Ebrahim,Kouhpayeh Amin,Abdolmaleki Parviz

Abstract

Hepatitis C virus (HCV) infects the liver and causes chronic infection. Several mutations in the viral genome have been associated with drug resistance development. Currently, there is no approved vaccine against the HCV. The employment of computational biology is the primary and crucial step for vaccine design or antiviral therapy which can substantially reduce the duration and cost of studies. Therefore, in this study, we designed a multi-epitope vaccine using various immunoinformatics tools to elicit the efficient human immune responses against the HCV. Initially, various potential (antigenic, immunogenic, non-toxic and non-allergenic) epitope segments were extracted from viral structural and non-structural protein sequences using multiple screening methods. The selected epitopes were linked to each other properly. Then, toll-like receptors (TLRs) 3 and 4 agonists (50S ribosomal protein L7/L12 and human β-defensin 2, respectively) were added to the N-terminus of the final vaccine sequence to increase its immunogenicity. The 3D structure of the vaccine was modeled. Molecular dynamics simulations studies verified the high stability of final free vaccines and in complex with TLR3 and TLR4. These constructs were also antigenic, non-allergenic, nontoxic and immunogenic. Although the designed vaccine traits were promising as a potential candidate against the HCV infection, experimental studies and clinical trials are required to verify the protective traits and safety of the designed vaccine.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. The global burden of hepatitis C;D. Lavanchy;Liver international,2009

2. Molecular biology of hepatitis C infection;K. Drazan;Liver transplantation,2000

3. Hepatitis C: diagnosis and treatment;T Wilkins;American family physician,2010

4. The natural history of hepatitis C virus (HCV) infection;SL Chen;International journal of medical sciences,2006

5. Antiviral strategies in hepatitis C virus infection;C Sarrazin;Journal of hepatology,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3