Xianling Gubao attenuates high glucose-induced bone metabolism disorder in MG63 osteoblast-like cells

Author:

Chen Xinlong,Li Yan,Zhang Zhongwen,Chen Liping,Liu Yaqian,Huang Shuhong,Zhang XiaoqianORCID

Abstract

Diabetes mellitus (DM) patients are prone to osteoporosis, and high glucose (HG) can affect bone metabolism. In the present study, we investigated the protective effects of traditional Chinese herbal formulation Xianling Gubao (XLGB) on HG-treated MG63 osteoblast-like cells. MG63 cells were incubated with control (mannitol), HG (20 mM glucose) or HG + XLGB (20 mM glucose+200 mg/L XLGB) mediums. Cell proliferation, apoptosis, migration and invasion were examined using CCK8, colony-formation, flow cytometry, Hoechst/PI staining, wound-healing and transwell assays, respectively. ELISA, RT-PCR and western blot analysis were used to detect the levels of osteogenesis differentiation-associated markers such as ALP, OCN, OPN, RUNX2, OPG, and OPGL in MG63 cells. The levels of the PI3K/Akt signaling pathway related proteins, cell cycle-related proteins, and mitochondrial apoptosis-related proteins were detected using western blot analysis. In HG-treated MG63 cells, XLGB significantly attenuated the suppression on the proliferation, migration and invasion of MG63 cells caused by HG. HG downregulated the activation of the PI3K/Akt signaling pathway and the expressions of cell cycle-related proteins, while XLGB reversed the inhibition of HG on MG63 cells. Moreover, XLGB significantly reduced the promotion on the apoptosis of MG63 cells induced by HG, the expressions of mitochondrial apoptosis-related proteins were suppressed by XLGB treatment. In addition, the expressions of osteogenesis differentiation-associated proteins were also rescued by XLGB in HG-treated MG63 cells. Our data suggest that XLGB rescues the MG63 osteoblasts against the effect of HG. The potential therapeutic mechanism of XLGB partially attributes to inhibiting the osteoblast apoptosis and promoting the bone formation of osteoblasts.

Funder

Shandong traditional Chinese Medicine Science and Technology Development Plan Project

Shandong Province medical and health science and technology development plan project

the Key Research & Development Plan of Shandong Province

Natural Science Foundation of Shandong Province

Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3