A method for non-destructive microwave focusing for deep brain and tissue stimulation

Author:

Harid VijayORCID,Kim Hoyoung,Li Ben-Zheng,Lei Tim

Abstract

Non-invasive stimulation of biological tissue is highly desirable for several biomedical applications. Of specific interest are methods for tumor treatment, endometrial ablation, and neuro-modulation. In traditional neuro-modulation, single- and multi-coil transcranial stimulation techniques in low oscillation frequencies are utilized to non-invasively penetrate the skull and elicit action potentials in cortical neurons. Although these methods have been proven effective, tightly focusing these signals to localized regions is difficult. In recent years, microwave (MW) methods have seen an increase usage as a minimally invasive treatment modality for ablation and neuro-stimulation. Unlike low frequency signals, MW signals can be focused to localized sub-centimeter regions. In this work we demonstrate that a three-dimensional array of MW antennas can be used to tightly focus signals to a localized region in space within the human body with MW frequencies. Assuming an array of small MW loop antennas are placed around the body, the optimal amplitude and phase of each array element can be accurately determined to match an arbitrary desired field profile. The major innovation of the presented method is that the fields that penetrate the biological region are determined via computing numerical Green’s functions (NGF) that are then used to drive an optimization algorithm. Using simplified models of regions in the human body, it is shown that the MW fields at 1 GHz can be focused to sub-centimeter sized “hot spots” at depths of several centimeters. The algorithm can be easily extended to more realistic models of the human body or for non-biological applications.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

1. Microwave imaging via space-time beamforming for early detection of breast cancer;E. J. Bond;IEEE Transactions on Antennas and Propagation,2003

2. The use of transcutaneous electrical nerve stimulation (TENS) for pain relief in labour: a review of the evidence,”;C. Bedwell;Midwifery,2011

3. Deep brain stimulation for Parkinson’s disease;A. L. Benabid;Current Opinion in Neurobiology,2003

4. In vitro and in vivo induction of human LoVo cells into apoptotic process by non-invasive microwave treatment: a potentially novel approach for physical therapy of human colorectal cancer;K. Maeda;Oncology Reports,2004

5. Complications of Deep Brain Stimulation Surgery;A. Beric;SFN,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3