Hcmv-miR-UL148D regulates the staurosporine-induced apoptosis by targeting the Endoplasmic Reticulum to Nucleus signaling 1(ERN1)

Author:

Pandeya AbhishekORCID,Khalko Raj Kumar,Singh Sukhveer,Kumar Manish,Gosipatala Sunil BabuORCID

Abstract

The propensity of viruses to co-opt host cellular machinery by reprogramming the host’s RNA-interference machinery has been a major focus of research, however, regulation of host defense mechanisms by virus-encoded miRNA, is an additional regulatory realm gaining momentum in the arena of host-viral interactions. The Human Cytomegalovirus (HCMV) miRNAs, regulate many cellular pathways alone or in concordance with HCMV proteins, thereby paving a conducive environment for successful infection in the human host. We show that HCMV miRNA, hcmv-miR-UL148D inhibits staurosporine-induced apoptosis in HEK293T cells. We establish that ERN1 mRNA is a bonafide target of hcmv-miR-UL148D and its encoded protein IRE1α is translationally repressed by the overexpression of hcmv-miR-UL148D resulting in the attenuation of apoptosis. Unlike the host microRNA seed sequence (6–8 nucleotides), hcmv-miR-UL148D has long complementarity to 3’ UTR of ERN1 mRNA resulting in mRNA degradation. The repression of IRE1α by the hcmv-miR-UL148D further downregulates Xbp1 splicing and c-Jun N-terminal kinase phosphorylation thus regulating ER-stress and ER-stress induced apoptotic pathways. Strikingly, depletion of ERN1 attenuates staurosporine-induced apoptosis which further suggests that hcmv-miR-UL148D functions through regulation of its target ERN1. These results uncover a role for hcmv-miR-UL148D and its target ERN1 in regulating ER stress-induced apoptosis.

Funder

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3