Motion artifact reduction for magnetic resonance imaging with deep learning and k-space analysis

Author:

Cui Long,Song Yang,Wang Yida,Wang Rui,Wu Dongmei,Xie Haibin,Li Jianqi,Yang GuangORCID

Abstract

Motion artifacts deteriorate the quality of magnetic resonance (MR) images. This study proposes a new method to detect phase-encoding (PE) lines corrupted by motion and remove motion artifacts in MR images. 67 cases containing 8710 slices of axial T2-weighted images from the IXI public dataset were split into three datasets, i.e., training (50 cases/6500 slices), validation (5/650), and test (12/1560) sets. First, motion-corrupted k-spaces and images were simulated using a pseudo-random sampling order and random motion tracks. A convolutional neural network (CNN) model was trained to filter the motion-corrupted images. Then, the k-space of the filtered image was compared with the motion-corrupted k-space line-by-line, to detect the PE lines affected by motion. Finally, the unaffected PE lines were used to reconstruct the final image using compressed sensing (CS). For the simulated images with 35%, 40%, 45%, and 50% unaffected PE lines, the mean peak signal-to-noise ratio (PSNRs) of resulting images (mean±standard deviation) were 36.129±3.678, 38.646±3.526, 40.426±3.223, and 41.510±3.167, respectively, and the mean structural similarity (SSIMs) were 0.950±0.046, 0.964±0.035, 0.975±0.025, and 0.979±0.023, respectively. For images with more than 35% PE lines unaffected by motion, images reconstructed with proposed algorithm exhibited better quality than those images reconstructed with CS using 35% under-sampled data (PSNR 37.678±3.261, SSIM 0.964±0.028). It was proved that deep learning and k-space analysis can detect the k-space PE lines affected by motion and CS can be used to reconstruct images from unaffected data, effectively alleviating the motion artifacts.

Funder

National Natural Science Foundation of China

Microscale Magnetic Resonance Platform of East China Normal University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3