In-silico prediction of RT-qPCR-high resolution melting for broad detection of emaraviruses

Author:

Olmedo-Velarde AlejandroORCID,Ochoa-Corona Francisco M.ORCID,Larrea-Sarmiento Adriana E.,Elbeaino Toufic,Flores FranciscoORCID

Abstract

Twenty-four species of RNA viruses contain members infecting economically important crops that are classified within the genus Emaravirus, family Fimoviridae. There are at least two other non-classified species that may be added. Some of these viruses are spreading rapidly and cause economically important diseases on several crops, raising a need for a sensitive diagnostic technique for taxonomic and quarantine purposes. High-resolution melting (HRM) has shown to be reliable for the detection, discrimination, and diagnosis of several diseases of plants, animals, and humans. This research aimed to explore the ability to predict HRM outputs coupled to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To approach this goal a pair of degenerate genus-specific primers were designed for endpoint RT-PCR and RT-qPCR-HRM and the species in the genus Emaravirus were selected to framework the development of the assays. Both nucleic acid amplification methods were able to detect in-vitro several members of seven Emaravirus species with sensitivity up to one fg of cDNA. Specific parameters for in-silico prediction of the melting temperatures of each expected emaravirus amplicon are compared to the data obtained in-vitro. A very distinct isolate of the High Plains wheat mosaic virus was also detected. The high-resolution DNA melting curves of the RT-PCR products predicted in-silico using uMeltSM allowed saving time while designing and developing the RT-qPCR-HRM assay since the approach avoided extensive searching for optimal HRM assay regions and rounds of HRM tests in-vitro for optimization. The resultant assay provides sensitive detection and reliable diagnosis for potentially any emaravirus, including new species or strains.

Funder

National Institute of Food and Agriculture

Oklahoma Department of Agriculture and Forestry

Oklahoma Agricultural Experiment Station

American Floral Endowment

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3